L

learnasyoulike

time


Coordinate Geometry Maths-class-10-ex-7-1

Table of contents:

NCERT Solutions for Class 10 Maths Chapter 7 Exercise 7.1

The Distance formula in Coordinate Geometry

If there are two points \(A(x_1, \;y_1)\) and \(B(x_2, \;y_2)\) on a cartesian plane, then their distance can be calculated with the following formula :

Distance between two points \[ \quad\Large{ \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} } \quad\]


Table of contents:

This is known as distance formula in the world of Coordinate Geometry. It has been derived from the famous Pythagorean theorem. All problems in this page are related to finding distance between two points.

To find the distance of a point, say \((x, \;y)\), from the origin \((0, \;0)\), the formula becomes:

Distance between origin and one point \[ \Large{ \sqrt{x^2+y^2} }\]

which is the simplified form of \( \sqrt{(x-0)^2 + (y-0)^2} \)




Solved problems

Class 10 Maths Chapter 7 Exercise 7.1

Q. 1(i): Find the distance between the pairs of points \(\;(2, 3)\) and \(\;(4, 1)\).

Solution

For points \(\;(2, 3)\) and \(\;(4, 1)\), \[ \quad x_1 = 2,\quad y_1 = 3,\quad x_2 = 4,\quad y_2 = 1 \quad \] So, the distance between those two points $$\begin{align} & = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ & = \sqrt{(4 - 2)^2 + (1 - 3)^2} \\ & = \sqrt{2^2 + (-2)^2} \\ & = \sqrt{4 + 4} \\ & = \sqrt{8} \\ & = \sqrt{2^2 \times 2} \\ & = \color{limegreen} {2\sqrt{2}} \text{ unit Ans.} \\ \end{align}$$

Maths Class 10 Exercise 7.1 Q1 (i)

Q. 1(ii): Find the distance between the pairs of points \(\;(-5, 7)\) and \(\;(-1, 3)\).

Solution

For points \(\;(-5, 7)\) and \(\;(-1, 3)\), \[ \quad x_1 = -5,\quad y_1 = 7,\quad x_2 = -1,\quad y_2 = 3 \quad \] So, the distance between those two points $$ \begin{align} & = \sqrt{(-1 - (-5))^2 + (3 - 7)^2} \\ & = \sqrt{(-1 + 5)^2 + (-4)^2} \\ & = \sqrt{4^2 + 16} \\ & = \sqrt{16 + 16} \\ & = \sqrt{32} \\ & = \sqrt{4^2 \times 2} \\ & = \color{limegreen} {4\sqrt{2}}\text{ unit Ans.}\\\\ \end{align} $$ Following is the graph of the straight line with some additional information:


Maths Class 10 Exercise 7.1 Q1 (ii)

Q. 1(iii) Find the distance between the pairs of points \(\;(a, b)\) and \(\;(-a, -b)\).

Solution

Here, \[ \quad x_1 = a,\quad y_1 = b,\quad x_2 = -a,\quad y_2 = -b \quad \] So, the distance between those two points $$ \begin{align} & = \sqrt{(-a - a)^2 + (-b - b)^2} \\ & = \sqrt{(-2a)^2 + (-2b)^2} \\ & = \sqrt{4a^2 + 4b^2} \\ & = \sqrt{4(a^2 + b^2)} \\ & = \color{limegreen} {2\sqrt{(a^2 + b^2)}} \text{ unit Ans.}\\ \end{align} $$



Q.2. Find the distance between the pairs of points \(\;(0, 0)\) and \(\;(36, 15)\).

Solution

Here, \[ \quad x_1 = 0,\quad y_1 = 0,\quad x_2 = 36,\quad y_2 = 15 \quad \] So, the distance between those two points $$ \begin{align} & = \sqrt{(36 - 0)^2 + (15 - 0)^2} \\ & = \sqrt{36^2 + 15^2} \\ & = \sqrt{1296 + 225} \\ & = \sqrt{1521} \\ & = \sqrt{3^2 \times 13^2 } \\ & = 3 \times 13 \\ & = \color{limegreen} {39}\text{ unit Ans.}\\ \end{align} $$ Following is the graph of the straight line:


Maths Class 10 Exercise 7.1 Q2

Q.3. Determine if the points \(\;(1, 5), (2, 3)\) and \(\;(-2, -11)\) are collinear.

Solution

Let us name the given points as \(\;P(1, 5), Q(2, 3)\) and \(\;R(-2, -11)\). Distance between P & Q, Q & R and P & R are as follows:
For PQ, \[ \quad x_1 = 1,\quad y_1 = 5,\quad x_2 = 2,\quad y_2 = 3 \quad \] $$ \begin{align} PQ & = \sqrt{(2 - 1)^2 + (3 - 5)^2} \\ & = \sqrt{1^2 + (-2)^2} \\ & = \sqrt{1 + 4} \\ & = \color{royalblue} {\sqrt{5}}\text{ unit } \\\\ \end{align} $$ For QR, \[ \quad x_1 = 2,\quad y_1 = 3,\quad x_2 = -2,\quad y_2 = -11 \quad \] $$ \begin{align} QR & = \sqrt{(-2 - 2)^2 + (-11 - 3)^2} \\ & = \sqrt{(-4)^2 + (-14)^2} \\ & = \sqrt{16 + 196} \\ & = \sqrt{212} \\ & = \sqrt{2^2 \times 53} \\ & = \color{royalblue} {2\sqrt{53}}\text{ unit } \\\\ \end{align} $$ For PR, \[ \quad x_1 = 1,\quad y_1 = 5,\quad x_2 = -2,\quad y_2 = -11 \quad \] $$ \begin{align} PR & = \sqrt{(-2 - 1)^2 + (-11 - 5)^2} \\ & = \sqrt{(-3)^2 + (-16)^2} \\ & = \sqrt{9 + 256} \\ & = \color{royalblue} {\sqrt{265}}\text{ unit } \\\\ \end{align} $$ If the 3 points P, Q and R are collinear, then PR(the whole line) must be equal to sum of PQ and QR. But in the given case, \( PQ + QR \ne PR \). So, the three points are not collinear. Ans.

Following is the graph of the three points P, Q and R.


Maths Class 10 Exercise 7.1 Q3

Q. 4.Check whether \(\;(5, -2), (6, 4)\) and \(\;(7, -2)\) are the vertices of an isosceles triangle.

Solution

Let us name the given points as \(\;P(5, -2), Q(6, 4)\) and \(\;R(7, -2)\).
We calculate the distances between P and Q, Q and R, P and R.
For PQ, \[ \quad x_1 = 5,\quad y_1 = -2,\quad x_2 = 6,\quad y_2 = 4 \quad \] $$ \begin{align} PQ & = \sqrt{(6 - 5)^2 + (4 - (-2))^2} \\ & = \sqrt{1^2 + (6)^2} \\ & = \sqrt{1 + 36} \\ & = \color{royalblue} {\sqrt{37}}\text{ unit } \\\\ \end{align} $$ For QR, \[ \quad x_1 = 6,\quad y_1 = 4,\quad x_2 = 7,\quad y_2 = 2 \quad \] $$ \begin{align} QR & = \sqrt{(7 - 6)^2 + (-2 - 4)^2} \\ & = \sqrt{1^2 + (-6)^2} \\ & = \sqrt{1 + 36} \\ & = \color{royalblue} {\sqrt{37}}\text{ unit } \\\\ \end{align} $$ For PR, \[ \quad x_1 = 5,\quad y_1 = -2,\quad x_2 = 7,\quad y_2 = -2 \quad \] $$ \begin{align} PR & = \sqrt{(7 - 5)^2 + (-2 - (-2))^2} \\ & = \sqrt{2^2 + (-2 + 2)^2} \\ & = \sqrt{4 + 0^2} \\ & = \sqrt{4} \\ & = \color{royalblue} 2\text{ unit } \\ \end{align} $$

Since side PQ = side QR, PQR is an isosceles triangle. So, points \(\;(5, -2), (6, 4)\) and \(\;(7, -2)\) are the vertices of an isosceles triangle. Ans.

An isosceles triangle has two equal sides. Following is the graph of the 3 lines formed by the given coordinates.



Maths Class 10 Exercise 7.1 Q4

It is clear that \(\;PQ = QR\). So the three given points form an ISOSCELES triangle.



Q.5. In a classroom, 4 friends are seated at the points A, B, C and D as shown in the given figure. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli, "Don’t you think ABCD is a square?" Chameli disagrees. Using distance formula, find which of them is correct.



Exercise 7.1 Q-5 🤹 A 🤷 B 🤵 C 🤴 D

Solution

According to the box, let us name the given points as A, B, C and D. So the coordinates are \(\;A(3, 4), B(6, 7), C(9, 4)\) and \(\;D(6, 1)\). Let us now find the distances AB, BC, CD and DA. $$ \begin{align} AB & = \sqrt{(6 - 3)^2 + (7 - 4)^2} \\ & = \sqrt{3^2 + 3^2} \\ & = \sqrt{9 + 9} \\ & = \sqrt{18} \\ & = \sqrt{3^2 \times 2} \\ & = \color{royalblue} {3\sqrt{2}}\text{ unit } \\\\ BC & = \sqrt{(9 - 6)^2 + (4 - 7)^2} \\ & = \sqrt{3^2 + (-3)^2} \\ & = \sqrt{9 + 9} \\ & = \sqrt{18} \\ & = \sqrt{3^2 \times 2} \\ & = \color{royalblue} {3\sqrt{2}}\text{ unit } \\\\ CD & = \sqrt{(6 - 9)^2 + (1 - 4)^2} \\ & = \sqrt{(-3)^2 + (-3)^2} \\ & = \sqrt{9 + 9} \\ & = \sqrt{18} \\ & = \sqrt{3^2 \times 2} \\ & = \color{royalblue} 3\sqrt{2}\text{ unit } \\\\ AD & = \sqrt{(6 - 3)^2 + (1 - 4)^2} \\ & = \sqrt{3^2 + (-3)^2} \\ & = \sqrt{9 + 9} \\ & = \sqrt{18} \\ & = \sqrt{3^2 \times 2} \\ & = \color{royalblue} {3\sqrt{2}}\text{ unit } \\\\ \end{align} $$ Till now we find that \( AB=BC=CD=AD=3\sqrt{2} \).
So, this quadrilateral is either a square or a rhombus.


Note: The diagonals of a square are always equal to each other. But diagonals of a rhombus are unequal.


To be sure, let us compare the lengths of diagonals AC and BD ... \begin{align} AC & = \sqrt{(9 - 3)^2 + (4 - 4)^2} \\ & = \sqrt{6^2 + 0^2} \\ & = \sqrt{36} \\ & = \color{royalblue} 6 \text{ unit }\\\\ BD & = \sqrt{(6 - 6)^2 + (1 - 7)^2} \\ & = \sqrt{0^2 + (-6)^2} \\ & = \sqrt{0 + 36} \\ & = \sqrt{36} \\ & = \color{royalblue} 6 \text{ unit }\\\\ \end{align} Since diagonals are equal to each other, and the four sides are also equal, \(ABCD\) is a square, and Champa was correct. Ans.



Q.6(i). Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:
\(\;(-1, -2), (1, 0), (-1, 2), (-3, 0)\)

Solution

Let us name the given points as \(\;P(-1, -2), Q(1, 0), R(-1, 2)\) and \(\;S(-3, 0)\). \begin{align} PQ & = \sqrt{(1 - (-1))^2 + (0 - (-2))^2} \\ & = \sqrt{2^2 + 2^2} \\ & = \sqrt{4 + 4} \\ & = \sqrt{8} \\ & = \sqrt{2^2 \times 2} \\ & = \color{royalblue} {2\sqrt{2}}\text{ unit } \\\\ QR & = \sqrt{(-1 - 1)^2 + (2 - 0)^2} \\ & = \sqrt{(-2)^2 + 2^2} \\ & = \sqrt{4 + 4} \\ & = \sqrt{8} \\ & = \sqrt{2^2 \times 2} \\ & = \color{royalblue} {2\sqrt{2}}\text{ unit } \\\\ RS & = \sqrt{(-3 - (-1))^2 + (0 - 2)^2} \\ & = \sqrt{(-2)^2 + (-2)^2} \\ & = \sqrt{4 + 4} \\ & = \sqrt{8} \\ & = \sqrt{2^2 \times 2} \\ & = \color{royalblue} {2\sqrt{2}}\text{ unit } \\\\ PS & = \sqrt{(-3 - (-1))^2 + (0 - (-2))^2} \\ & = \sqrt{(-2)^2 + (0 + 2)^2} \\ & = \sqrt{4 + 4} \\ & = \sqrt{8} \\ & = \sqrt{2^2 \times 2} \\ & = \color{royalblue} {2\sqrt{2}}\text{ unit } \\ \end{align} As all the 4 sides are equal, the quadrilateral should either be a square, or a rhombus. The two diagonals of a square are equal to each other. But a rhombus has unequal diagonals.

Let us measure the diagonals ... \begin{align} \text{Diagonal }PR & = \sqrt{(-1 - (-1))^2 + (2 - (-2))^2} \\ & = \sqrt{(-1 + 1)^2 + (2 + 2)^2} \\ & = \sqrt{0^2 + 4^2} \\ & = \sqrt{16} \\ & = \color{royalblue} 4 \text{ unit } \\\\ \text{Diagonal }QS & = \sqrt{(-3 - 1)^2 + (0 - 0)^2} \\ & = \sqrt{(-4)^2 + 0^2} \\ & = \sqrt{16 + 0} \\ & = \sqrt{16} \\ & = \color{royalblue} 4 \text{ unit } \\\\ \end{align} Since all sides are equal, and the two diagonals are also equal to each other, the shape is a square.  Ans.

Please check the following graph ...


Maths Class 10 Exercise 7.1 Q6(i)

Q.6(ii). Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:
\(\;(-3, 5), (3, 1), (0, 3), (-1, -4)\)

Solution

Let us name the given points as \(\;A(-3, 5), B(3, 1), C(0, 3)\) and \(\;D(-1, –4)\). $$ \begin{align} AB & = \sqrt{(3 - (-3))^2 + (1 - 5)^2} \\ & = \sqrt{(3 + 3)^2 + (-4)^2} \\ & = \sqrt{6^2 + 16} \\ & = \sqrt{36 + 16} \\ & = \sqrt{52} \\ & = \sqrt{2^2 \times 13} \\ & = \color{royalblue} {2\sqrt{13}}\text{ unit } \\\\ BC & = \sqrt{(0 - 3)^2 + (3 - 1)^2} \\ & = \sqrt{(-3)^2 + 2^2} \\ & = \sqrt{9 + 4} \\ & = \color{royalblue} {\sqrt{13}} \text{ unit } \\\\ CD & = \sqrt{(-1 - 0)^2 + (-4 - 3)^2} \\ & = \sqrt{(-1)^2 + (-7)^2} \\ & = \sqrt{1 + 49} \\ & = \sqrt{50} \\ & = \sqrt{5^2 \times 2} \\ & = \color{royalblue} {5\sqrt{2}}\text{ unit } \\\\ AD & = \sqrt{(-1 - (-3))^2 + (-4 - 5)^2} \\ & = \sqrt{2^2 + (-9)^2} \\ & = \sqrt{4 + 81} \\ & = \color{royalblue} \sqrt{85}\text{ unit } \\\\ AC & = \sqrt{(0 - (-3))^2 + (3 - 5)^2} \\ & = \sqrt{3^2 + (-2)^2} \\ & = \sqrt{9 + 4} \\ & = \color{royalblue} \sqrt{13} \text{ unit }\\\\ BD & = \sqrt{(-1 - 3)^2 + (-4 - 1)^2} \\ & = \sqrt{(-4)^2 + (-5)^2} \\ & = \sqrt{16 + 25} \\ & = \color{royalblue} {\sqrt{41}} \text{ unit } \\ \end{align} $$ Since \( AC + BC = \sqrt 13 + \sqrt 13 = 2\sqrt 13 = AB \),
points \(A, B, C\;\) are collinear.
So no quadrilateral is possible with the given four points.  Ans.


Maths Class 10 Exercise 7.1 Q6(ii)

Q.6(iii). Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:
\(\;(4, 5), (7, 6), (4, 3), (1, 2)\)

Solution

Let us name the given points as \(\;A(4, 5),\; B(7, 6),\; C(4, 3)\;\) and \(\;D(1, 2)\).
For distance A to B, \[x_1= 4,\, y_1= 5,\, x_2= 7,\, y_2= 6\] \[\sqrt {( 7 - 4 )^2 + (6 - 5)^2 }\] \begin{align} & = \sqrt{3^2 + 1^2} \\\\ & = \sqrt{9 + 1} \\\\ & = \color{royalblue} \sqrt{10}\text{ unit } \\\\ \end{align} For distance B to C, \[x_1= 7,\, y_1= 6,\, x_2= 4,\, y_2= 3\] \[\sqrt {( 4 - 7 )^2 + (3 - 6)^2 }\] \begin{align} & = \sqrt{(-3)^2 + (-3)^2} \\\\ & = \sqrt{9 + 9} \\\\ & = \sqrt{18} \\\\ & = \sqrt{3^2 \times 2} \\\\ & = \color{royalblue} {3\sqrt{2}} \text{ unit } \\\\ \end{align} For distance C to D, \[x_1= 4,\, y_1= 3,\, x_2= 1,\, y_2= 2\] \[\sqrt {( 1 - 4 )^2 + (2 - 3)^2 }\] \begin{align} & = \sqrt{(-3)^2 + (-1)^2} \\\\ & = \sqrt{9 + 1} \\\\ & = \color{royalblue} \sqrt{10}\text{ unit } \\\\ \end{align} For distance A to D, \[x_1= 4,\, y_1= 5,\, x_2= 1,\, y_2= 2\] \[\sqrt {( 1 - 4 )^2 + (2 - 5)^2 }\] \begin{align} & = \sqrt{(-3)^2 + (-3)^2} \\\\ & = \sqrt{9 + 9} \\\\ & = \sqrt{18} \\\\ & = \sqrt{3^2 \times 2} \\\\ & = \color{royalblue} {3\sqrt{2}} \text{ unit } \\\\ \end{align} For diagonal AC, \[x_1= 4,\, y_1= 5,\, x_2= 4,\, y_2= 3\] \[\sqrt {( 4 - 4 )^2 + (3 - 5)^2 }\] \begin{align} & = \sqrt{0^2 + (-2)^2} \\\\ & = \sqrt{0 + 4} \\\\ & = \color{royalblue} 2 \text{ unit }\\\\ \end{align} For diagonal BD, \[x_1= 7,\, y_1= 6,\, x_2= 1,\, y_2= 2\] \[\sqrt {( 1 - 7 )^2 + (2 - 6)^2 }\] \begin{align} & = \sqrt{(-6)^2 + (-4)^2} \\\\ & = \sqrt{36 + 16} \\\\ & = \sqrt{52} \\\\ & = \sqrt{2^2 \times 13} \\ & = \color{royalblue} {2\sqrt{13}} \text{ unit } \\\\ \end{align} Since \( AB = CD = \sqrt 10\), and \( BC = AD = 3\sqrt 2\),
the opposite sides of this quadrilateral are equal.
The quadrilateral is either a rectangle or a parallelogram.

Note: The diagonals of a rectangle are always equal to each other. But diagonals of a parallelogram are unequal.


In our case, the diagonals are not equal; \(AC \ne BD, \text{ since } 2 \ne 2\sqrt{13}, \).
So, the given quadrilateral is a parallelogram. Ans.



Maths Class 10 Exercise 7.1 Q6(iii)

Q.7. Find the point on the x-axis which is equidistant from \(\;(2, -5)\) and \(\;(-2, 9)\).

Solution

Given that an unkonwn point is equidistant from \(\;(2, -5)\) and \(\;(-2, 9)\).
It is also given that the said point lies on the X-axis.
So, from the 2nd condition we know that y coordinate of the unknown point is 0.
Let the unknown point be \(P(x, \;0)\).

Distance between \((x, \;0)\) and \((2, \;-5)\): \begin{align} & = \sqrt{(2 - x)^2 + (-5 - 0)^2} \\[6pt] & = \sqrt{(2^2 - 2.2.x + x^2) + (-5)^2} \\[6pt] & = \sqrt{4 - 4.x + x^2 + 25} \\[6pt] & = \color{royalblue} \sqrt{x^2 - 4x + 29}\quad\text{ -- (i)} \\\\ \end{align} Distance between \((x, \;0)\) and \((-2, \;9)\): \begin{align} & = \sqrt{(-2 - x)^2 + (9 - 0)^2} \\[6pt] & = \sqrt{((-2)^2 - 2.(-2).x + x^2) + (9)^2} \\[6pt] & = \sqrt{4 + 4.x + x^2 + 81} \\[6pt] & = \color{royalblue} \sqrt{x^2 + 4x + 85} \quad\text{ -- (ii)} \\\\ \end{align} According to the box, (i) and (ii) are equal: \begin{align} & \sqrt{x^2 - 4x + 29} = \sqrt{x^2 + 4x + 85} \\\\ & or, x^2 - 4x + 29 = x^2 + 4x + 85 \\\\ & or, - 4x + 29 = 4x + 85 \\\\ & or, -4x -4x = 85 -29 \\\\ & or, -8x = 56 \\\\ & \therefore x = 56 \div (-8) = \color{royalblue}-7 \\\\ \end{align} Since \(\;x = -7\),
the required point is \((-7, \;0)\)  Ans.



Maths Class 10 Exercise 7.1 Q7

Q.8. Find the values of y for which the distance between the points \(P(2, \;-3)\) and \(Q(10, \;y)\) is \(10\) unit.

Solution

Distance between \(\;P(2, -3)\) and \(\;Q(10, y)\) is : \begin{align} & = \sqrt{(10 - 2)^2 + (y - (-3))^2} \\\\ & = \sqrt{8^2 + (y + 3)^2} \\\\ & = \sqrt{64 + y^2 + 2.y.3 + 3^2} \\\\ & = \sqrt{64 + y^2 + 6y + 9} \\\\ & = \color{royalblue} \sqrt{y^2 + 6y + 73} \\\\ \end{align} Given that the distance between \(P\) and \(Q\) is \(10\). \begin{align} & \therefore \sqrt{y^2 + 6y + 73} = 10 \\\\ & \Rightarrow y^2 + 6y + 73 = 10^2 = 100 \\\\ & \Rightarrow y^2 + 6y + 73 - 100 = 0 \\\\ & \Rightarrow y^2 + 6y - 27 = 0 \\\\ & \Rightarrow y^2 + 9y - 3y - 27 = 0 \\\\ & \Rightarrow y(y + 9) - 3(y + 9) = 0 \\\\ & \Rightarrow (y + 9)(y - 3) = 0 \\\\ & \Rightarrow \text{either } (y + 9) = 0 \quad\therefore y = \color{royalblue} -9 \\\\ & \Rightarrow \text{or } (y - 3) = 0 \quad\quad\therefore y = \color{royalblue} 3 \\\\ \end{align} So, the value of \(\;y\;\) is \(\;-9\;\) or \(\;3\;\).  Ans.

Following is the graph of the two points:

Maths Class 10 Exercise 7.1 Q8

Q.9. If \(\;Q(0, \;1)\) is equidistant from \(\;P(5, \;-3)\), and \(\;R(x, \;6)\), find the value of \(\;x.\) Also, find the distances \(QR\) and \(PR\).

Solution

For distance between \(\; Q(0, \;1) \) and \(\; P(5, \;-3) \), \( x_1 = 0,\quad y_1 = 1,\quad x_2 = 5,\quad y_2 = -3 \)

For distance between \(\; Q(0, \;1) \) and \(\; R(x, \;6) \), \( x_1 = 0,\quad y_1 = 1,\quad x_2 = x,\quad y_2 = 6 \)

Given that distance
\begin{align} Q(0,1) \text{ to } P(5,-3) & \, = \, Q(0,1) \text{ to } R(x,6) \\\\ \small\Rightarrow \sqrt{(5 - 0)^2 + (-3 - 1)^2} &= \small\sqrt{(x - 0)^2 + (6 - 1)^2} \\\\ \small\Rightarrow (5 - 0)^2 + (-3 - 1)^2 &= \small(x - 0)^2 + (6 - 1)^2 \\\\ \Rightarrow 5^2 + (-4)^2 &= x^2 + 5^2 \\\\ \Rightarrow 25 + 16 &= x^2 + 25 \\\\ \Rightarrow x^2 + 25 &= 25 + 16 \\\\ \Rightarrow x^2 &= 16 \\\\ \Rightarrow x &= \pm 4 \\\\ \end{align} The value of \(x = +4 \; or \; -4\) When \(x = 4, \; R(x, \;6)\;\) becomes \(\;R(4, \;6) \) Distance \(QR\) when \(\;x = 4\), \begin{align} & = \sqrt{(4 - 0)^2 + (6 - 1)^2} \\\\ & = \sqrt{(4^2 + 5^2)} \\\\ & = \sqrt{16 + 25} \\\\ &= \pmb{\sqrt{41}} \text{ unit} \\\\ \end{align} When \(x = -4, \;R(x, \;6)\) becomes \(\;R(-4, \;6) \) Distance \(\;QR\;\) when \(\;x = -4\), \begin{align} & = \sqrt{(-4 - 0)^2 + (6 - 1)^2} \\\\ & = \sqrt{(-4)^2 + 5^2} \\\\ & = \sqrt{16 + 25} \\\\ & = \pmb{\sqrt{41}} \text{ unit} \\\\ \end{align} Distance \(PR\;\) when \(x = 4\), \begin{align} & = \sqrt{(4 - 5)^2 + (6 - (-3))^2} \\\\ & = \sqrt{(-1^2 + 9^2)} \\\\ &= \sqrt{1 + 81} \\\\ & = \sqrt{82}\text{ unit} \\\\ \end{align} Distance \(\;PR\;\) when \(x = -4\), \begin{align} & = \sqrt{(-4 - 5)^2 + (6 - (-3))^2} \\\\ & = \sqrt{(-9)^2 + 9^2} \\\\ & = \sqrt{81 + 81} \\\\ & = \sqrt{81 \times 2} \\\\ & = \sqrt{9^2 \times 2} \\\\ & = 9\sqrt{2}\text{ unit} \\\\ \end{align} So, \(\;x = 4, \quad -4\)
Distance \(QR = \sqrt{41} \)
Distance \(PR = \sqrt{82}, \quad 9\sqrt{2} \) Ans.

Following is the graph of the given 3 points with additional 1 point:

Maths Class 10 Exercise 7.1 Q9

Q.10. Find a relation between x and y such that the point \(;(x, y)\) is equidistant from the points \(\;(3, 6)\) and \(\;(-3, 4)\).

Solution

Distance \(\;(x, y)\) to \(\;(3, 6) = (x, y)\) to \(\;(-3, 4)\) $$ \begin{align} &\small\Rightarrow\sqrt{(3 - x)^2 + (6 - y)^2}\;=\;\sqrt{(-3 - x)^2 + (4 - y)^2} \\\\ &\small\Rightarrow (3 - x)^2 + (6 - y)^2\;=\; (-3 - x)^2 + (4 - y)^2 \\\\ &\small\Rightarrow 3^2 - 2.3.x + x^2 + 6^2 - 2.6.y + y^2\\ &\hspace{2cm}\small\;=\; (-3)^2 - 2.(-3).x + x^2 + 4^2 - 2.4.y + y^2\\\\ &\small\Rightarrow 9 - 6x + x^2 + 36 - 12y + y^2\\ &\hspace{2cm}\small\;=\; 9 + 6x + x^2 + 16 - 8y + y^2\\\\ &\small\Rightarrow x^2 + y^2 - 6x - 12y + 45\;=\; x^2 + y^2 + 6x - 8y + 25\\\\ &\Rightarrow - 6x - 12y + 45\;=\; 6x - 8y + 25\\\\ &\Rightarrow - 6x - 12y + 45 - 6x + 8y - 25\;=\; 0\\\\ &\Rightarrow -12x - 4y + 20\;=\; 0\\\\ &\Rightarrow -3x - y + 5\;=\; 0\\\\ &\Rightarrow 3x + y - 5\;=\; 0 \\\\ &\therefore y \;=\; -3x + 5 \end{align} $$ Here, the relation between x and y is $$ y = -3x + 5 \color{green}{\text{ Ans.}}$$



Maths Class 10 Exercise 7.1 Q10

In the diagram, points A, B and C are equidistant from points P and Q. Their coordinates \(\;(0,5), (1,2)\;\) and \(\;(2,-1)\) have been calculated from the equation \( \color{red}{\,y = -3x + 5}\quad \) When \(\;x=0,\; y=5,\) when \(\;x=1,\; y=2,\) when \(\;x=2,\; y=-1\) ...




--- x ---









Want to leave a message for me?