L

learnasyoulike

time


Coordinate Geometry maths-class-10-ex-7-3

Table of contents:

NCERT Solutions for Class 10 Maths Chapter 7 Exercise 7.3


Area of a Triangle in Coordinate Geometry

If coordinates of the vertices of a triangle ABC are \( A(x_1, \;y_1), \;B(x_2, \;y_2) \) and \( C(x_3, \;y_3) \), then area of the triangle w.r.t its co-ordinates of the vertices is:

Formula for area of a triangle in Coordinate Geometry \[\frac12 \times {\color{red} \{} x_1\times(y_2 - y_3) \boldsymbol{\color{red} +} x_2\times(y_3 - y_1) \boldsymbol{\color{red} +} x_3\times(y_1 - y_2) {\color{red} \}} \]




Table of contents:

Solved problems

Class 10 Maths Chapter 7 Exercise 7.3

Q. 1(i): Find the area of the triangle whose vertices are: \((2, \;3), (-1, \;0)\), and \((2, \;-4)\).

Solution

The given vertices are
\begin{align} & x_1=2,\; y_1=3, \\ & x_2= -1,\; y_2=0,\; x_3=2,\; y_3=-4 \\ \end{align} Area of a triangle w.r.t its co-ordinates of the vertices is: \[\frac12 \times {\color{red} \{} x_1\times(y_2 - y_3) \boldsymbol{\color{red} +} x_2\times(y_3 - y_1) \boldsymbol{\color{red} +} x_3\times(y_1 - y_2) {\color{red} \}} \] \[\frac12 \times {\color{red} \{} 2\times(0 - (-4)) \boldsymbol{\color{red} +} (-1)\times(-4 - 3) \boldsymbol{\color{red} +} 2\times(3 - 0) {\color{red} \}} \] \[\frac12 \times \{ 2 \times 4 + (-1) \times (-7) + 2 \times 3 \} \] \[= \frac12 \times \{8+7+6\}\] \[ = \frac12 \times 21 \] \[ = 10.5 \text{ sq. unit} \] So, the required area of the given triangle = 10.5 sq. unit Ans.
Following is the graph of the given triangle:


Maths Class 10 Exercise 7.3 Q1(i)

Q. 1(ii): Find the area of the triangle whose vertices are: \( (-5, \;-1),\, (3, \;-5),\) and \((5, \;2)\).

Solution

The given vertices are
\begin{align} & x_1=-5,\; y_1=-1, \\ & x_2= 3,\; y_2=-5,\; x_3=5,\; y_3=2 \\ \end{align} Area of a triangle w.r.t its co-ordinates of the vertices is: \[\frac12 \times {\color{red} \{} x_1\times(y_2 - y_3) \boldsymbol{\color{red} +} x_2\times(y_3 - y_1) \boldsymbol{\color{red} +} x_3\times(y_1 - y_2) {\color{red} \}} \] Substituting \( x_1, \,y_1, \,x_2, \,y_2, \,x_3, \,y_3 \) with the given values, area of the triangle \[\frac12 \times {\color{red} \{} -5\times(-5 - 2) \boldsymbol{\color{red} +} 3\times(2 - (-1)) \boldsymbol{\color{red} +} 5\times(-1 - (-5)) {\color{red} \}} \] \[\frac12 \times \{ -5 \times (-7) + 3 \times 3 + 5 \times 4 \} \] \[\frac12 \times \{35 + 9 + 20 \}\] \[ = \frac12 \times 64 \] \[ = 32 \text{ sq. unit } \] So, the required area of the given triangle = 32 sq. unit Ans.
Following is the graph of the given triangle:



Maths Class 10 Exercise 7.3 Q1(ii)

Q. 2(i): Find the value of 'k' for which the points \( (7, \;-2), (5, \;1), (3, \;k) \) are collinear.

Solution

When three points are collinear, they actually cannot form any triangle, or we can say that the area formed by the triangle is zero.
The given vertices are
\begin{align} & x_1=7,\; y_1=-2, \\ & x_2= 5,\; y_2=1,\; x_3=3,\; y_3=k \\ \end{align} Area of the triangle formed by those vertices = 0. \[\frac12 \times {\color{red} \{} x_1\times(y_2 - y_3) \boldsymbol{\color{red} +} x_2\times(y_3 - y_1) \boldsymbol{\color{red} +} x_3\times(y_1 - y_2) {\color{red} \}} \] Substituting \( x_1,\; y_1,\; x_2,\; y_2,\; x_3,\; y_3 \) with the given values,
\[\frac12 \times {\color{red} \{} 7\times(1 - k) \boldsymbol{\color{red} +} 5\times(k - (-2)) \boldsymbol{\color{red} +} 3\times(-2 - 1) {\color{red} \}} \] \[\frac12 \times {\color{red} \{} 7\times((k+2) - (-3)) \boldsymbol{\color{red} +} 5\times(-3 - (1-k)) \boldsymbol{\color{red} +} 3\times((1-k) - (k+2)) {\color{red} \}} \] \[ \Rightarrow \frac12 \times (7-7k+5k+10-9) = 0 \] \[ \Rightarrow \frac12 \times (8-2k) = 0 \] \[ \Rightarrow \frac{ 2 \times(4-k)}{2} = 0 \] \[ \Rightarrow 4-k = 0 \] \[ \therefore k = 4 \] So, the vertices are collinear when k = 4 Ans.

Following is the graph of the given three coordinates:


Maths Class 10 Exercise 7.3 Q2(i)

Q. 2(ii): Find the value of 'k' for which the points \( (8, \;1), (k, \;-4), (2, \;-5) \) are collinear.

Solution

When three points are collinear, they actually cannot form any triangle, or we can say that the area formed by the triangle is zero.

The given vertices are
\begin{align} & x_1=8,\; y_1=1, \\ & x_2= k,\; y_2=-4,\; x_3=2,\; y_3=-5 \\ \end{align} Area of the triangle formed by those vertices = 0. \[\frac12 \times {\color{red} \{} x_1\times(y_2 - y_3) \boldsymbol{\color{red} +} x_2\times(y_3 - y_1) \boldsymbol{\color{red} +} x_3\times(y_1 - y_2) {\color{red} \}} \] Substituting \( x_1, \;y_1, \;x_2, \;y_2, \;x_3, \;y_3 \) with the given values,
\[\frac12 \times {\color{red} \{} 8\times(-4 - (-5)) \boldsymbol{\color{red} +} k\times(-5 - 1) \boldsymbol{\color{red} +} 2\times(1 - (-4)) {\color{red} \}} \] \[\frac12 \times \{ 8 \times (-4+5) + k \times (-6) + 2 \times (1+4) \} \] \[\frac12 \times \{ 8 \times 1 + k \times (-6) + 2 \times 5 \} \] \[ \Rightarrow \frac12 \times (8-6k+10) = 0 \] \[ \Rightarrow \frac12 \times (18-6k) = 0 \] \[ \Rightarrow \frac{ 2 \times(9-3k)}{2} = 0 \] \[ \Rightarrow 9-3k = 0 \] \[ \Rightarrow -3k = -9 \] \[ \therefore k = 3 \] So, the vertices are collinear when k = 3 Ans.

Following is the graph of the given three coordinates:


Maths Class 10 Exercise 7.3 Q2(ii)

Q. 3: Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are \((0, \;-1),\; (2, \;1),\; (0, \;3)\). Find the ratio of this area to the area of the given triangle.

Solution

Let ΔABC be the given triangle whose vertices are \(A(0, \;-1),\; B(2, \;1)\) and \(C(0, \;3)\).
What are the tasks here?
(1) Join the given vertices to form ΔABC.
(2) Find the area of ΔABC with given coordinates.
(3) Join the midpoints of AB, BC and CA to form inner ΔPQR.
(4) Find the coordinates of point P, Q and R with midpoint formula.
(5) Find the area of ΔPQR.
(6) Calculate the ratio of the area of ΔPQR to ΔABC.

Graph in box:


Maths Class 10 Exercise 7.3 Q3

Here, ABC is the given triangle with vertices: \begin{align} & x_1=0,\; y_1=-1, \\ & x_2= 2,\; y_2=1,\; x_3=0,\; y_3=3 \\ \end{align} \(\therefore \) Area of triangle ABC: \[\frac12 \times {\color{red} \{} 0\times(1 - 3) \boldsymbol{\color{red} +} 2\times(3 - (-1)) \boldsymbol{\color{red} +} 0\times(-1 - 1) {\color{red} \}} \] \[\frac12 \times \{ 0 \times (-2) + 2 \times 4 + 0 \times (-2) \} \] \[ = \frac12 \times (0+8+0) \] \[ = \frac12 \times 8 \] \[ = 4 \text{ sq. unit} \] Let \(P\) be the midpoint of \(AB\),
\(Q\) be the midpoint of \(BC\),
and \(R\) be the midpoint of \(CA\).

The formula to find the midpoint of a straight line is: \[\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \, \right)\] Let us find coordinates of midpoint \(P\) of \( A(0, \;-1),\; B(2, \;1) \) where \[x_1= 0,\, y_1= -1,\, x_2= 2,\, y_2= 1\] \[\left(\frac{0+2}{2}, \frac{(-1)+1}{2} \, \right)\] \[\left(\frac{2}{2},\, \frac{0}{2} \, \right)\] \[ = (1, \;0) \] We find coordinates of midpoint \(Q\) of \( B(2, 1),\; C(0, 3) \) where \[x_1= 2,\, y_1= 1,\, x_2= 0,\, y_2= 3\] \[\left(\frac{2+0}{2}, \frac{1+3}{2} \, \right)\] \[\left(\frac{2}{2},\, \frac{4}{2} \, \right)\] \[ = (1, \;2) \] and coordinates of midpoint \(R\) of \( C(0, \;3),\; A(0, \;-1) \) where \[x_1= 0,\, y_1= 3,\, x_2= 0,\, y_2= -1\] \[\left(\frac{0+0}{2}, \frac{3+(-1)}{2} \, \right)\] \[\left(\frac{0}{2},\, \frac{2}{2} \, \right)\] \[ = (0, \;1) \]
Now we know the coordinates of points \(P, Q, R\) as \((1, \;0),\; (1, \;2), (0, \;1)\).
For triangle PQR, \begin{align} & x_1=1,\; y_1=0, \\ & x_2= 1,\; y_2=2,\; x_3=0,\; y_3=1 \\ \end{align} \(\therefore \) Area of triangle PQR: \[\frac12 \times {\color{red} \{} 1\times(2 - 1) \boldsymbol{\color{red} +} 1\times(1 - 0) \boldsymbol{\color{red} +} 0\times(0 - 2) {\color{red} \}} \] \[\frac12 \times \{ 1 \times 1 + 1 \times 1 + 0 \times (-2) \} \] \[ = \frac12 \times (1+1+0) \] \[ = \frac12 \times 2 \] \[ = 1 \text{ sq. unit} \] So area of ΔPQR = 1 sq. unit,
area of ΔABC = 4 sq. unit.
\(\therefore \) Ratio of areas \(ΔPQR : ΔABC = 1:4\) Ans.

Following is the solved graph:


Maths Class 10 Exercise 7.3 Q3-Solved


Q. 4: Find the area of the quadrilateral whose vertices, in order, are \((-4, \;-2),(-3, \;-5),(3, \;-2)\) and \((2, \;3)\).

Solution

A diagonal inside the quadrilateral will divide it in two triangles. We find the areas of these two triangles and add them to find the area of the whole quadrilateral.

Let the vertices be \(A(-4, \;-2),\; B(-3, \;-5),\; C(3, \;-2),\; D(2, \;3)\). We draw the diagonal \(BD\) and get two triangles Δ\(ABD\) and Δ\(BCD\) as per the following graph.

Maths Class 10 Exercise 7.3 Q3-Solved

For ΔABD,
\begin{align} & x_1=-4,\; y_1=-2, \\ & x_2= -3,\; y_2=-5,\; x_3=2,\; y_3=3 \\ \end{align} Area of triangle ABD: \[\frac12 \times {\color{red} \{} x_1\times(y_2 - y_3) \boldsymbol{\color{red} +} x_2\times(y_3 - y_1) \boldsymbol{\color{red} +} x_3\times(y_1 - y_2) {\color{red} \}} \] \[\frac12 \times {\color{red} \{} -4\times(-5 - 3) \boldsymbol{\color{red} +} (-3)\times(3 - (-2)) \boldsymbol{\color{red} +} 2\times(-2 - (-5)) {\color{red} \}} \] \[\frac12 \times \{ -4 \times (-8) + (-3) \times 5 + 2 \times 3 \} \] \[ = \frac12 \times (32-15+6) \] \[ = \frac12 \times (38-15) \] \[ = \frac{23}2 \text{ sq. unit} \]
For ΔBCD,
\begin{align} & x_1=-3,\; y_1=-5, \\ & x_2= 3,\; y_2=-2,\; x_3=2,\; y_3=3 \\ \end{align} Area of triangle BCD: \[\frac12 \times {\color{red} \{} -3\times(-2 - 3) \boldsymbol{\color{red} +} 3\times(3 - (-5)) \boldsymbol{\color{red} +} 2\times(-5 - (-2)) {\color{red} \}} \] \[\frac12 \times \{ -3 \times (-5) + 3 \times 8 + 2 \times (-3) \} \] \[ = \frac12 \times (15+24-6) \] \[ = \frac12 \times (39-6) \] \[ = \frac{33}2 \text{ sq. unit} \]


Now, area of the quadrilateral ABCD
= area of ΔABD + area of ΔBCD \[ = \frac{23}{2} + \frac{33}{2} \] \[ = \frac{23+33}{2} \] \[ = \frac{56}{2} \] \[ = 28 \text{ sq. unit} \color{green}{\text{ Ans.}} \]



Q. 5: You have studied in Class IX that a median of a triangle divides it into two triangles of equal areas. Verify this result for ΔABC whose vertices are \( A(4, \;-6),\; B(3, \;-2)\) and \(C(5, \;2)\).

Solution

Let the given triangle be ABC with D midpoint of AC. So, BD is the median of the ΔABC which divides it into two smaller ΔABD and ΔBCD.

Maths Class 10 Exercise 7.3 Q5

Let us find the coordinates of D (which is the midpoint of AC).
By midpoint formula, \[x_1= 4,\, y_1= -6,\, x_2= 5,\, y_2= 2\] \[\left(\frac{4+5}{2}, \frac{(-6)+2}{2} \, \right)\] \[\left(\frac{9}{2},\, \frac{-4}{2} \, \right)\] \[ = \left( \frac92, -2 \right) \] \[ = ( 4.5, \;-2) \]
So, for ΔABD, coordinates of the vertices are \begin{align} & x_1=4,\; y_1=-6, \\ & x_2= 3,\; y_2=-2,\; x_3=4.5,\; y_3=-2 \\ \end{align} So, area of ΔABD : \[\frac12 \times {\color{red} \{} 4\times(-2 - (-2)) \boldsymbol{\color{red} +} 3\times(-2 - (-6)) \boldsymbol{\color{red} +} 4.5\times(-6 - (-2)) {\color{red} \}} \] \[\frac12 \times \{ 4 \times (-2+2) + 3 \times (-2+6) + 4.5 \times (-6+2) \} \] \[\frac12 \times \{ 4 \times 0 + 3 \times 4 + 4.5 \times (-4) \} \] \[ = \frac12 \times (0+12-4.5 \times4) \] \[ = \frac12 \times (12-18) \] \[ = \frac12 \times (-6) \] \[ = -3 \] Note: In Coordinate Geometry, if an area is found to be negative, we should take its absolute value, i.e., the positive value.
So area of ΔABD = 3 sq. unit.
Again, for ΔBCD, coordinates of the vertices are \begin{align} & x_1=3,\; y_1=-2, \\ & x_2= 5,\; y_2=2,\; x_3=4.5,\; y_3=-2 \\ \end{align} So, area of ΔBCD : \[\frac12 \times {\color{red} \{} 3\times(2 - (-2)) \boldsymbol{\color{red} +} 5\times(-2 - (-2)) \boldsymbol{\color{red} +} 4.5\times(-2 - 2) {\color{red} \}} \] \[\frac12 \times \{ 3 \times (2+2) + 5 \times (-2+2) + 4.5 \times (-4) \} \] \[\frac12 \times \{ 3 \times 4 + 5 \times 0 + 4.5 \times (-4) \} \] \[ = \frac12 \times (12+0-18) \] \[ = \frac12 \times (12-18) \] \[ = \frac12 \times (-6) \] \[ = -3 \] As per above note, take the absolute value of -3.
So area of ΔBCD = 3 sq. unit
So both the ΔABD and ΔBCD have equal areas of 3 sq. unit Verified.




--- x ---









Want to leave a message for me?